学术报告
Vafa-Witten invariants for projective surfaces and projective surface Deligne-Mumford stacks-蒋云峰教授 (堪萨斯大学)
、
题目:Vafa-Witten invariants for projective surfaces and projective
surface Deligne-Mumford stacks
报告人:蒋云峰教授
(堪萨斯大学)
Abstract : Motivated by S-duality conjecture in physics, especially the work of Vafa-Witten, Tanaka-Thomas have developed a theory of Vafa-Witten invariants for projective surfaces. The invariants are defined by virtual localization on the moduli space of stable Higgs sheaves on a projective surface S. A Higgs sheaf is a pair (E, /phi) consisting of a torsion free coherent sheaf E, and a K_S-valued section of /phi E called the Higgs field. The extra data of the Higgs field provided information of sheaves on the Calabi-Yau threefold K_S, and the Vafa-Witten invariants of S receives contributions from the Calabi-Yau threefold. This is similar to Donaldson-Thomas invariants. In this series of talks I will talk about how to define Vafa-Witten invariants for projective orbifold surfaces, and how the information of orbifold surfaces may give a chance to reduce the S-duality conjecture to the Langlands duality for projective curves.
时间: 5月31日(周五)、6月3日(周一)
上午8:30-9:30
地点:565net必赢客户端本部教二楼 527 教室
时间: 6月6日(周四) 上午8:30-9:30
地点:565net必赢客户端本部教二楼 827 教室
联系人:孙善忠
欢迎全体师生积极参加!