学术报告
Algebraic Degrees of Exponential Sums - 万大庆 教授 (University of California, Irvine)
题目:Algebraic Degrees of Exponential Sums
报告人:万大庆 教授 (University of California, Irvine)
Abstract:Exponential sums over finite fields are of central importance in number theory and its applications. Much of the modern study focuses on its analytic properties as complex numbers or as p-adic numbers (some sort of Riemann hypothesis). In this talk, we view exponential sums as algebraic numbersin the p-th cyclotomic field and investigate their degrees as algebraic numbers.
简介:
万大庆教授现任教于美国加州大学欧文分校(University of California, Irvine),曾获教育部海外杰出青年称号,曾入选中科院百人计划,获得国际华人数学家晨兴(Morningside)数学银奖。他的研究兴趣是数论和算术代数几何,尤其是有限域上的zeta函数和L-函数。解决了一系列现代数论中的若干著名猜想,包括Dwork 猜想,Katz猜想,Gouvea–Mazur猜想等,已在数学顶尖杂志Annals of Mathematic、Inventiones Mathematicae、Journal of American Mathematical Society等发表了多篇文章。同时,他在编码、密码和计算复杂性领域都有很高的研究成就,这些成果分别发表在FOCS、STOC、FOCM等著名计算机杂志上。
时间:8月2日(周五)下午15:00-16:00
地点:565net必赢客户端本部教二楼 813 教室
联系人:张俊
欢迎全体师生积极参加!